RÉPUBLIQUE ALGERIÉNNE DÉMOCRATIQUE ET POPULAIRE MINISTERE DE L'HABITAT, DE L'URBANISME ET DE LA VILLE

CENTRE NATIONAL D'ÉTUDES ET DE RECHERCHES INTÉGRÉES DU BATIMENT

RECOMMANDATIONS

POUR LA CONCEPTION ET LE CALCUL AU FEU DES STRUCTURES

Partie 1 : Calcul au feu des structures en acier

© CNERIB, 2020 ISBN: 978-9931-694-76-2 Dépôt légal: Mars 2020.

Composante du Groupe Technique Spécialisé

Recommandations pour la conception et le calcul au feu des structures

Partie I : Calcul au feu des structures en acier

-	•	•	•		4
Pr	Δ	21	n	ρn	1
11		,,,	u	UI.	ц

AFRA Hamid CNERIB

Rapporteurs:

AOULI Djida CNERIB
BELHAMEL Farid CNERIB
HAKIMI Laabed CNERIB

Vice Président

ABALACHE Bachir B.E.T

Membres

AHMED CHAOUCH Ali USTHB

AROUSSI Miloud CETIM

BENARBA Lotfi Protection Civile

BOUYOUCEF Rachid BEREG

KDROUSSI Belkacem CTC Ouest

KENAI Said U. Blida

MATENE Ahmed CTC Chlef

MEHANI Youcef CGS

ROUICHED Ali CTC Sud

SAKHRAOUI Said CNERIB

TAHRAT Nabila CTC Centre

Préambule

Chaque année en Algérie, on enregistre malheureusement des incendies dans les bâtiments à usage d'habitation ou autre et dans les ouvrages et entrepôts de stockage de divers matériaux et produits faisant des victimes humaines et des dégâts matériels importants.

L'incendie demeure un risque permanent qui doit être pris en considération lors de la conception et de la réalisation de bâtiments à l'effet de sauvegarder efficacement les vies humaines et les biens matériels.

En effet, le système de réglementation technique algérienne de la construction a prévu dans sa nomenclature l'élaboration de documents techniques réglementaires (DTR) relatifs aux règles de conception et de calcul au feu des structures en divers matériaux.

En attendant la promulgation de ces DTR, les présentes recommandations sont élaborées dans une première phase pour aider les différents intervenants (Maîtres d'ouvrages, Maîtres d'œuvres, Entreprises de réalisation et Organisme de contrôle) dans l'acte de bâtir à considérer le risque incendie dans la conception et l'exécution des ouvrages.

Dans ce cadre, des dispositions constructives doivent être adoptées afin de limiter le développement et la propagation d'un incendie affectant un bâtiment ou une construction quelconque.

Ces recommandations précisent d'une part, les exigences auxquelles doivent satisfaire les matériaux et les éléments de construction afin de limiter le risque lié à l'incendie à un niveau acceptable et d'autre part, les méthodes permettant de justifier que ces matériaux et ces éléments de construction présentent effectivement le niveau de performance requis.

Ce document doit être utilisé concomitamment avec les autres DTR et références réglementaires et normatives traitant des situations normales sans incendie et notamment le DTR C. 2.4.4. « Règles de conception et de calcul des structures en acier, CCM97 ».

Pour faciliter son utilisation, un fascicule d'exemples d'application commentés est élaboré aussi.

Sommaire

Préambule	01
Liste des figures	03
Liste des tableaux	04
Liste des annexes	05
Définitions	06
Symboles	30
CHAPITRE 1 - GENERALITES	12
1.1 Objet	12
1.2 Domaine d'application	12
1.3 Exigences de base	12
1.4 Hypothèses	12
CHAPITRE 2 - PROCEDURE DE CALCUL STRUCTURAL AU FEU	14
2.1 Généralités	
2.2 Scénario de feu de calcul	14
2.3 Feu de calcul	15
2.4 Analyse thermique	15
2.5Analyse mécanique	15
CHAPITRE 3 - ANALYSE THERMIQUE (ACTION THERMIQUE)	
3.1 Règles générales	
3.2 Courbes nominales température/temps	
3.3 Modèles de feu naturel	
CHAPITRE 4 - ACTIONS POUR L'ANALYSE STRUCTURALE (ACTIONS MECANIQUES)	20
4.1 Généralités	
4.2 Simultanéité des actions	21
4.3 Règles de combinaisons des actions	21
CHAPITRE 5 - PROPRIETES DES MATERIAUX	23
5.1 Généralités	23
5.2 Propriétés mécaniques des aciers au carbone	23
5.3 Propriétés mécaniques des aciers inoxydables	25
5.4 Propriétés thermiques	27
CHAPITRE 6 - BASES DE CALCUL DU COMPORTEMENT AU FEU	32
6.1 Généralités	32
6.2 Exigences	
6.3 Valeurs de calcul des propriétés des matériaux	33
6.4 Méthodes de vérification	34
6.5 Calcul du comportement au feu	35

Liste des Figures

Figure 3-1: Courbes température/temps des différents incendies	17
Figure 5-1 : Relations contrainte-déformation pour l'acier au carbone aux températures élevées	24
Figure 5-2 : Facteurs de réduction pour les relations contrainte-déformation de l'acier au carbone aux te	
élevées	25
Figure 5-3: Relations contrainte-déformation pour l'acier inoxydable aux températures élevées	26
Figure 5-4 : Dilatation thermique de l'acier au carbone en fonction de la température	28
Figure 5-5: Chaleur spécifique de l'acier au carbone en fonction de la température	28
Figure 5-6 : Conductivité thermique de l'acier au carbone en fonction de la température	29
Figure 5-7: Dilatation thermique de l'acier inoxydable en fonction de la température	30
Figure 5-8 : Chaleur spécifique de l'acier inoxydable en fonction de la température	30
Figure 5-9 : Conductivité thermique de l'acier inoxydable en fonction de la température	31
Figure 6-1 : Différentes approches d'analyse pour le comportement mécanique des structures en situation d'i	incendie32
Figure 6-2 : Longueurs de flambement la de poteaux dans des ossatures contreventées	38

Liste des Tableaux

Tableau 3.1: Valeurs recommandées de $lpha_c$	16
Tableau 4.1: Valeurs des facteurs ψ pour les bâtiments	
Tableau 5.1: Facteurs de réduction pour les relations contrainte-déformation de l'acier au carbone aux températu élevées	ıres
Tableau 6.1:Domaine d'application des différentes méthodes de calcul en situation de feu nominal (normalisé) et so conditions de feu naturel	ous
Tableau 6.2: Facteurs de moments uniformes équivalents	42
Tableau 6.3: Température critique θa,cr en fonction du taux d'utilisation μ ₀ μ ₀	43
Tableau 6.4:Facteur de massiveté Am/V pour les éléments en acier non protégés	45
Tableau 6.5: Valeurs indicatives des caractéristiques thermiques de différents matériaux d'isolation	46
Tableau 6.6: Facteur de massiveté Ap/V pour les éléments en acier protégés par un matériau de protection contre le f	feu4

Liste des Annexes

Annexe A	COURBES PARAMETREESTEMPERATURE/TEMPS	50
Annexe B	ACTIONS THERMIQUES POUR LES ELEMENTS EXTERIEURS	54
Annexe C	FEUX LOCALISES	63
Annexe D	MODELES DE FEU AVANCES (MODELES A ZONES)	66
Annexe E	DENSITES DE CHARGE CALORIFIQUE	69
Annexe F	TEMPS EQUIVALENT D'EXPOSITION AU FEU	75
Annexe G	FACTEUR DE FORME	77
Annexe H	ECROUISSAGE AUX TEMPERATURES ELEVEES	81
Annexe I	TRANSFERT THERMIQUE AUX STRUCTURES EXTERIEURES	83
Annexe J	ACIER INOXYDABLE	99
Annexe K	ASSEMBLAGES	103
Annexe L	SECTIONS DE CLASSE 4	106